CYCLOADDITION OF HALOKETENES TO IMINES: A CONVENIENT SYNTHESIS OF FUNCTIONALLY SUBSTITUTED 8-LACTAMS AND 2-PYRIDONES.

Fernando Duran and Léon Ghosez

Laboratoire de Chimie Organique de Synthèse Université Catholique de Louvain, 96, Naamsestraat, Louvain, Belgium (Received in UK 8 December 1969; accepted for publication 19 December 1969)

Despite constant interest in finding new and efficient routes to biologically active β -lactams, the synthesis of reactive and properly substituted β -lactams remains difficult. In connection with their work on penicillin, Sheehan and Corey (1) allowed Schiff bases to react with phtaloylglycyl- or succinylglycylchloride in the presence of triethylamine. Subsequent hydrazinolysis could convert the resulting acylamino- β -lactams to the corresponding 3-amino- β -lactams. However, this approach is very much limited by the sensitivity of many β -lactams toward hydrazine (2). Another route involves the synthesis of 3-azido- β -lactams and their subsequent reduction but this appears unsuitable for the synthesis of penicillin derivatives having natural configuration at C_5 - C_6 (3) .

We wish to report on an extension of our work on haloketenes (4) to a simple and efficient synthesis of α -halogenated- β -lactams (5) which are potential precursors of various functionally substituted β -lactams.

The dropwise addition of 0.02 mole monochloroacctylchloride $\underline{\textbf{1a}}$ (X=H) in 50 ml benzene to a solution of benzophenoneanil $\underline{\textbf{2a}}$ (0.01 mole) and triethylamine (0.02 mole) at room temperature yielded quantitatively 1,4-triphenyl-3-chloro-2-azetidinone $\underline{\textbf{3a}}$. The same procedure was successfully applied for the synthesis of α -chloro- and α , α -dichloro- β -lactams (Table I) from Schiff bases derived from aromatic as well as aliphatic amines (6) .

The β -lactams have been identified by a combination of elemental and spectral (mass, i.r. and n.m.r.) analyses. It is worth noting that the reaction of monochloroacetylchloride with benzalaniline in the presence of

triethylamine gave a single stereoisomer $\underline{3c}$ having the trans-configuration at C_3 - C_4 .

When the imine function is part of a conjugated system both 1,2 and 1,4 cycloadducts can be formed. The dehydrochlorination of dichloroacetylchloride with triethylamine in the presence of Schiff bases derived from cinnamaldehyde gave only the δ -lactams $\underline{4a-c}$ ($\mathbf{Y}_{C=0}$ 1698 cm⁻¹) which were readily converted into the corresponding α -chloro-2-pyridones $\underline{5a-c}$ ($\mathbf{Y}_{C=0}$ 1650 cm⁻¹) in an excess of triethylamine.

4 a, R=C6H5

b, R=CH3C6H4

c, R=C6H5CH=CH-CH=N-

5a, R= C6H5; 45%

b, R=CH3C6H4; 67%

c, R=C6H5CH=CH-CH=N-;75%

Two main interpretations are offered for the mechanistic origin of the s- and δ -lactams. The most plausible pathway involves the initial formation of

monochloro- or dichloroketene $\underline{6a,b}$ followed by cycloaddition to the imine through a dipolar intermediate $\underline{7}$ which closes to form the lactam ring (7). A higher ground state energy and a more favourable distribution of the dipole's negative charge by the chlorine substituents readily account for the increased reactivity of these chloroketenes as compared with ketene itself (8).

C1₂ CH COC1
$$C1_2$$
 CH COC1 $C1_2$ CH CC1 $C1_2$ CH CC2H5)3N $C1_2$ CH CC6H5 $C1_2$ CH CC2H5)3N $C1_2$ CH CC6H5 $C1_2$ CH CC2H5)3N $C1_2$ CH CC2H5)3N

This result excludes $\underline{\mathbf{8}}$ as the main precursor of $\underline{\mathbf{3}}$ d We thus believe that, under our experimental conditions, the evidence favours $\underline{\mathbf{pathway}}$ a over $\underline{\mathbf{pathway}}$ b although a small contribution of $\underline{\mathbf{path}}$ cannot be completely excluded (9).

Further work in our laboratory is directed toward a more detailed study of these mechanistic pathways and the utilization of the reaction for the synthesis of biologically active β -lactams.

Acknowledgment

We are pleased to acknowledge the "Fonds de la Recherche Fondamentale Collective" for financial support. One of us (F.D.) is grateful to the Ford Foundation for a predoctoral fellowship.

REFERENCES

- (1) J.C. Sheehan and E.J. Corey, Organic Reactions, 9, 388 (1958).
- (2) H.T. Clarke, J.R. Johnson and R. Robinson, <u>The Chemistry of Penicillin</u>, Princeton University Press (1949).
- (3) A.K. Bose, B. Anjaneyulu, S.K. Bhattacharya and M.S. Manhas, <u>Tetrahedron</u>
 23, 4769 (1967); A.K. Bose, G. Spiegelman and M.S. Manhas, <u>J. Amer.</u>
 Chem. Soc., 90, 4506 (1968).
- (4) L. Ghosez, R. Montaigne and P. Mollet, <u>Tetrahedron Letters</u>, 135, (1966); L. Ghosez, R. Montaigne, H. Vanlierde and F. Dumay, <u>Angew. Chem. internat</u>. <u>Edit.</u>, 7, 643 (1968); R. Montaigne and L. Ghosez, <u>Angew. Chem. internat</u>. <u>Edit.</u>, 7, 221 (1968); R. Montaigne, Doctoral Dissertation, University of Louvain (1968).
- (5) Two reports on the synthesis of 3-halo-2-azetidinones have appeared recently: E. Ziegler, Th. Wimmer and H. Mittelbach, Monatsh. 99, 2128 (1968); J.A. Deyrup, S.C. Clough, J. Amer. Chem. Soc., 91, 4590 (1969).
- (6) Carbodiimides have been found to react in a similar manner:
 (a) R. Hull, <u>J. Chem. Soc</u>.(C), 1154 (1967).
 (b) W.T. Brady, E.D. Dorsey and F.H. Parry, <u>J. Org. Chem</u>., 34, 2846 (1969).
- (7) H.B. Kagan and J.K. Luche, <u>Tetrahedron Letters</u>, 3093 (1968); R. Huisgen, B.A. Davis and M. Morikawa, <u>Angew. Chem. internat.</u> Edit., 7, 826 (1968).
- (8) H. Staudinger, Ber., 50, 1035 (1917).
- (9) Pathway \underline{b} becomes probably operative when the acid chloride is mixed with the imine before the addition of triethylamine.